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【要旨】 

本稿では，系列表現に対するグローバル・ローカル推論のための統一的枠組みを提案する。 

本手法は，トークン埋め込み列に対するスペクトル解析と，重なり合う局所ウィンドウ上のコホモロジ

ー的正則化原理を組み合わせたものである。トークン軸に沿った離散フーリエ解析を出発点とし，低周

波成分を大局的意味意図の担い手，高周波成分を局所的係り受けとして解釈する。さらに，ウィンドウ

被覆上にグラフ構造を導入し，コチェイン複体を定義することで，局所推論間の不整合をコバウンダリ

に基づく損失として定量化する。ホッジ理論に基づく調和射影を用いることで，最大限に整合的な大域

表現を抽出する。 

提案手法は，コホモロジーを純粋な位相的不変量としてではなく，意味的一貫性を制御するための計算

可能な正則化原理として位置づけるものである。目的関数，最適化手法，および Transformer への具体

的な組み込み方法を明示的に与える。 

 

1 序論 

大規模言語モデルにおける推論は，主として局所的に計算される中間表現に基づいており，大域的な意

味的一貫性は暗黙的にしか保証されていない。自己注意機構は⾧距離依存を扱えるものの，重複する局

所文脈間で生じる意味的不整合を直接的に抑制する仕組みは備えていない。 

一方で，トークン埋め込み系列に対するスペクトル解析により，大局的意味構造と局所的文脈構文構造

を分離できることが示唆されている。 

本稿では，これら二つの視点を統合し，スペクトル的に抽出された大局意図と，コホモロジーに着想を

得た局所整合正則化を組み合わせた新たな推論枠組みを提案する。 

本研究はトークン埋め込み系列に対して系列方向の離散フーリエ変換（DFT）を適用し、周波数パワー

スペクトルから Von Neumann entropy (VNE) や KL を用いて「低周波＝大局意図、 高周波＝局所情報」

を定量化する前論文「DFT による周波数位相解析＋VNE による周波数選択」の枠組みを出発点とする。 

さらに、局所ウィンドウ群の被覆に対するコチェイン／コホモロジーとグラフ版ホッジ分解（ラプラシ
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アン投影）を導入し、局所推論（セクション）の不整合（コバウンダリ）を損失に入れて「意味的な貼

り合わせ（gluing）」を行う手法を構築する。実践的には Transformer の各層／各ヘッドに Spectral 

Module と Cohomology Regularizer を導入することで実装できる。 

本研究の中心概念は「調和的グルーイング」である。すなわち，タスク損失を満たす局所表現の集合の

中から，コバウンダリのエネルギーを最小化し，ウィンドウ被覆により誘導されるグラフ・ラプラシア

ンの調和部分空間に射影された表現を選択する。 

重要な点として，本枠組みは厳密な層コホモロジーの実装ではなく，深層表現に適合した線形化・計算

可能な類似物であることを明確にしておく。 

 

2 トークン系列に対するスペクトル定式化 

2.1 表記と離散フーリエ変換(DFT) 

・トークン数 𝑇、埋め込み次元 𝑑、埋め込み行列を 

𝑉 ∈ ℝௗ×் 

で表す。 

各トークン系列 𝑡の列ベクトルは 𝑣௧ ∈ ℝௗ（列）とし、 𝑉 = [𝑣ଵ, … , 𝑣்]になる。 

・トークン軸に作用する単位的離散フーリエ変換（列ごとに系列上で行う）を行う場合、 

DFT 行列  𝐹 ∈ 𝐶்×்を用いてのスペクトル表現は、 

𝑉෨ = 𝑉𝐹 ∈ ℂௗ×், 

となる。各列 𝑉෨:,௡が周波数 𝑛成分（複素ベクトル）となる。 

成分表現： 

𝑉෨:,௡ = ෍ 𝑣௧

்

௧ୀଵ

𝑒ିଶగ௜(௧ିଵ)(௡ିଵ)/், 𝑛 = 1, … , 𝑇. 

・各周波数 𝑛のパワー（エネルギー）を 

𝐸௡ =∥ 𝑉෨:,௡ ∥ଶ
ଶ= 𝑉෨:,௡

∗ 𝑉෨:,௡, 

と複素共役の内積（または Hermitian 内積）で定義し、 

総エネルギー  

𝐸୲୭୲ୟ୪ = ෍ 𝐸௡

்

௡ୀଵ
 

により正規化して確率分布 

𝑝௡ =
𝐸௡

𝐸୲୭୲ୟ୪
, ෍ 𝑝௡

௡

= 1 

を得る。 

・Von Neumann Entropy (VNE)（本稿ではスペクトル分布のエントロピー的量として扱う）: 

VNE(𝑝) = − ෍ 𝑝௡

்

௡ୀଵ

log 𝑝௡. 

2.2 スペクトルエントロピーと帯域選択 

スペクトル分布に対してエントロピー汎関数 
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𝐻(𝑝) = − ෍ 𝑝௡

்

௡ୀଵ

log 𝑝௡ 

を定義する。 

本研究では，低周波成分が大局的意味構造を，高周波成分が局所的変動やノイズを主に担うと仮定する。 

周波数帯 Ω ⊂ {1, … , 𝑇} に対し，切断された分布を 

𝑝௡
(ஐ)

=
𝐸௡1௡∈ஐ

∑ 𝐸௠௠∈ஐ
 

と定義する。帯域選択は，情報損失 

𝐷௄௅(𝑝 ∥ 𝑝(ஐ)) 

を最小化する，あるいはエネルギー保持率 

෍ 𝐸௡

௡∈ஐ

≥ 𝜌 ෍ 𝐸௡

்

௡ୀଵ

 

を満たす最小の Ω を選ぶことで行う。 

2.3 大局意図ベクトル 𝒈（低周波投影） 

低周波帯域 Ω ⊂ {1, … , 𝑇}を VNE 最大保存または KL 最小化基準により選び、逆 DFT 再構成で大局意図

埋め込み 𝑔 ∈ ℝௗ（もしくは系列⾧と同じ形で位置依存の低周波復元）を定義する。位置非依存の global 

intent を想定すると典型的には帯域内の全周波数成分を用いて平均化再構成を行う： 

𝑔 =
1

∣ Ω ∣
෍ ℜ(

௡∈ஐ

𝑉෨:,௡) = ℜ(
1

∣ Ω ∣
෍ 𝑉෨:,௡
௡∈ஐ

), 

    （Where,  ℜ(∙)は複素行列から実部だけを取り出す作用素） 

あるいは位置依存の再構成（逆 DFT で得る系列）を各トークン位置に対応させる場合は 

𝐺 = IDFT(𝑉෨:,ஐ) ∈ ℝௗ×், 𝐺 = 𝑉෨[:,ஐ]𝐹[ஐ,:]
ିଵ  

を global intent の系列版として用いる。 

帯域選択基準（VNE 保存か KL 最小化に基づく制約）により Ωを選ぶ。 

 

3 局所ウィンドウとコチェイン構造 

3.1 ウィンドウ被覆と局所セクション 

トークン集合 {1, … , 𝑇} を覆う重複ウィンドウ族 𝑈 = 𝑈௜௜ୀଵ
ே  を考える。各ウィンドウ 𝑈௜ に対して局所推論

モジュールが section 表現 

𝑠௜ ∈ ℝ௥ 

を出力するとき，𝑠 = (𝑠ଵ, … , 𝑠ே) は 0-コチェインを成す。 

3.2 グラフ構造とコバウンダリ 

ウィンドウ 𝑈௜ を頂点とし，𝑈௜ ∩ 𝑈௝ ≠\𝑣𝑎𝑟𝑛𝑜𝑡ℎ𝑖𝑛𝑔 のとき辺を張ることで無向グラフ 𝐺 を定義する。 

向きを与えたインシデンス行列 𝐵 を用いると，コバウンダリ作用素は 

𝛿𝑠 = (𝐵 ⊗ 𝐼௥)𝑠 

と表され，隣接ウィンドウ間の差分を与える。⊗はクロネッカー積。 

3.3 不整合エネルギーとラプラシアン 

全不整合量は 
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∥ 𝛿𝑠 ∥ଶ
ଶ= 𝑠ୃ(𝐿 ⊗ 𝐼௥)𝑠 

と書ける。ここで 𝐿 = 𝐵ୃ𝐵 はグラフ・ラプラシアンであり，局所表現間の意味的不一致を定量化する。 

3.4 被覆・コチェイン 

・被覆（局所ウィンドウ）集合 𝒰 = {𝑈௜}௜ୀଵ
௠ , 各 𝑈௜はトークン位置の連続区間（重複可）。 

・各パッチに対して局所推論が出す局所セクションを 𝑠௜ ∈ ℝ௥（代表的に中間表現ベクトルや局所確率分 

布）とする。0-コチェイン空間： 

𝐶଴(𝒰) = ෑ 𝒮௜

௠

௜ୀଵ

, 𝒮௜ ≅ ℝ௥ , 

で 𝑠 = (𝑠ଵ, … , 𝑠௠) ∈ 𝐶଴になっている。 

・交差 𝑈௜௝ = 𝑈௜ ∩ 𝑈௝ 上の遷移データ（比較写像）を 1-コチェインとして扱う。簡便化して遷移差を直接

のベクトル差として扱う場合、1-コチェイン空間 𝐶ଵ(𝒰) は各交差に対応する差分ベクトルの集合とな

る。切断された Stalks 茎(∋Germs 芽;ベクトル要素)のイメージは連文節/文節の重複ウィンドウ。 

3.5 コバウンダリ演算子と不整合ノルム 

・被覆の隣接関係をグラフネットワークで表し、インシデンス行列 𝐵 ∈ ℝ௠×௘（頂点＝ウィンドウ、辺＝ 

隣接交差）を定義する。向き付けされた辺 𝑘が頂点 𝑖から 𝑗へ向いているとき項は 𝐵௜,௞ = 1, 𝐵௝,௞ = −1。 

・0-コチェイン 𝑠 ∈ ℝ௠௥（各頂点に r 次元を並べたベクトル）に対して辺上の差分（コバウンダリに対応） 

を行列で表す。各辺が r 次元差を持つため、ブロック構造で表すと： 

𝛿𝑠 = (𝐵ୃ ⊗ 𝐼௥)ௗ𝑠 ∈ ℝ௘௥ , 

ここで ⊗はクロネッカー積。各辺上について差 𝑠௝ − 𝑠௜が得られる（向きに依存）。 

・不整合量（コバウンダリの二乗ノルム）を 

∥ 𝛿𝑠 ∥ଶ
ଶ= 𝑠ୃ(𝐵𝐵ୃ ⊗ 𝐼௥)ௗ𝑠. 

よってグラフ・ラプラシアン（ノード側）を 𝐿 = 𝐵𝐵ୃ ∈ ℝ௠×௠と定義すれば局所不整合の合計は 

෍ ∥

edges (௜,௝)

𝑠௝ − 𝑠௜ ∥ଶ
ଶ= 𝑠ୃ(𝐿 ⊗ 𝐼௥)𝑠. 

 

4 ホッジ理論的解釈 

ラプラシアンの固有分解 

𝐿 = 𝑈Λ𝑈ୃ 

において，零固有値に対応する部分空間 ker 𝐿 は，すべてのウィンドウで整合的な割当を与える調和  

0-コチェインに対応する。 

調和射影は 

𝑃୦ୟ୰୫ = 𝑈଴𝑈଴
ୃ 

で与えられる。ここで 𝑈଴ は ker 𝐿 の直交基底である。 

本研究で扱う射影は，高次コホモロジーに由来する真の障害を除去するものではない。それらは学習過

程において低減されるべき不可避の意味的矛盾として残存する。 

4.1 コホモロジーと調和代表（ホッジ分解） 

・ラプラシアンの nullspace（零空間）が「貼り合う（矛盾のない）成分」すなわち調和空間に対応する。 

具体的に 0-コチェイン上のグラフ版ホッジ分解を考えると、 
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ℝ௠௥ = im(𝛿ற) ⊕ ker (𝐿 ⊗ 𝐼௥) ⊕ im(𝛿), 

などの分解が成り立つ（簡便化したグラフ版表現）。 

・調和代表 𝑠୦ୟ୰୫はラプラシアンの零空間への直交射影により得られる： 

𝑠୦ୟ୰୫ = 𝑃୩ୣ୰ (௅⊗ூೝ)ௗ𝑠, 

ここで 𝑃୩ୣ୰ (⋅)は零空間への直交射影。実装上は特異値分解や Lanczos 法で零空間の基底 𝑈଴（列直交）

を求め、 𝑃 = 𝑈଴𝑈଴
ୃとする。 

 

5 統一的最適化目的関数 

提案手法の全体損失は次で与えられる： 

ℒ = ෍ ℒtask
௜

(𝑠௜) + 𝜆ௗ𝑠ୃ(𝐿 ⊗ 𝐼௥)𝑠 + 𝜇ௗ𝐷௄௅(𝑝 ∥ 𝑝(ஐ)) + 𝜂ௗ ෍ ∥

௜

𝑠௜ − 𝑃௜(𝐺) ∥ଶ
ଶ. 

ここで 𝑃௜ は大局意図 𝐺 をウィンドウ 𝑈௜ に制限する射影である。 

5.1 最適化モデル 

局所損失、コバウンダリ項、スペクトル（KL）項を組み合わせた全体損失： 

ℒ(𝑠, 𝑔)   =    ෍ ℒ௜
୪୭ୡ

௠

௜ୀଵ

(𝑠௜)

⏟

局所損失

   +   𝜆ௗ𝑠ୃ(𝐿 ⊗ 𝐼௥)𝑠   +   𝜇ௗ𝐷୏୐(𝑝ௗ ∣∣ ௗ𝑝ஐ(𝑔))   +   𝜂ௗ ෍ ∥

௠

௜ୀଵ

𝑠௜ − 𝑃௜(𝑔) ∥ଶ
ଶ  

各項の説明： 

・ℒ௜
୪୭ୡ(𝑠௜)：ウィンドウ 𝑖のタスク固有の負ログ尤度や損失（例えばクロスエントロピーや回帰誤差）。 

・𝜆ௗ𝑠ୃ(𝐿 ⊗ 𝐼௥)𝑠：コバウンダリ（二乗）による局所不整合ペナルティ（𝜆 ≥ 0）。 

・𝜇ௗ𝐷୏୐(𝑝ௗ ∣∣ ௗ𝑝ஐ(𝑔)) ：周波数分布 𝑝 （入力のエネルギー分布）と、選択された帯域 Ω に基づく再分配 𝑝ஐ

（あるいは低周波再構成から得られる分布）間の Kullback‒Leibler divergence。これにより VNE の著

しい変化を抑えつつ適切な帯域選択を奨励する（𝜇 ≥ 0）。 

・𝜂ௗ ∑ ∥௜ 𝑠௜ − 𝑃௜(𝑔) ∥ଶ
ଶ：global intent 𝑔からの投影（パッチ 𝑖に切り取られた事前）へ強制する項（𝜂 ≥ 0）。

𝑃௜ は global intent をパッチ空間へ写す射影（例えば IDFT 復元上の切断や線形射影）。 

特に 𝐷୏୐の中身は明示的に： 

𝐷୏୐(𝑝 ∣∣ 𝑝ஐ) = ෍ 𝑝௡

்

௡ୀଵ

log 
𝑝௡

𝑝ஐ(𝑛)
, 𝑝ஐ(𝑛) = ൝

𝑝௡

∑ 𝑝௠௠∈ஐ
𝑛 ∈ Ω,

0 𝑛 ∉ Ω,
 

ただしゼロ除算や log の定義を避けるために小さな平滑化 𝜖を加える。 

5.2 最適化アルゴリズム（交互最適化・局所更新の展開） 

目的関数は 𝑠（局所セクション集合）と 𝑔（帯域 Ωと復元）を含む。 

交互最適化（Alternate Minimization）を行う。 

ステップ A：𝒈, 𝛀（スペクトル選択）更新 

1. 現在の表現 𝑉（または 𝑠から再構成した表現）で周波数分布 𝑝を計算。 

2. 帯域 Ω を選ぶ問題は離散選択問題だが、近似的には次の凸化されたスコアでソートして上位 𝑘 を
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選ぶ方針や、KL コストを最小化する分割を行う： 
Ω = arg min 

∣ஐ∣ஸ௞
𝐷୏୐(𝑝ௗ ∣∣ ௗ𝑝ஐ). 

実装上は累積エネルギーで閾値 𝑆を満たす最小の Ωを選ぶ（例：∑ 𝑝௡௡∈ஐ ≥ 𝑆）。 

3. 逆 DFT により 𝑔（あるいは 𝐺）を再構成。 

ステップ B：固定 𝒈下で 𝒔を更新（局所更新の二次形式展開） 

各ウィンドウ 𝑖 に関して、ℒ௜
୪୭ୡ(𝑠௜)  が二次近似で表現できる場合（ニュートン法の二次近似や二乗誤差タ

スク）、局所更新は線形方程式を解く形式に帰着する。具体的に二次近似： 

ℒ௜
୪୭ୡ(𝑠௜) ≈

1

2
𝑠௜

ୃ𝐻௜𝑠௜ − 𝑏௜
ୃ𝑠௜ + 𝑐௜ , 

ここで 𝐻௜は正定値近似ヘッセ行列、𝑏௜ は勾配に相当するベクトル。 

全体の 𝑠に関する二次化合体は 

ℒ(𝑠) ≈
1

2
𝑠ୃ(𝐻ୠ୪୭ୡ୩ + 2𝜆(𝐿 ⊗ 𝐼௥) + 2𝜂𝐼)𝑠 − 𝑏ୠ୪୭ୡ୩

ୃ 𝑠 + const, 

ここで 𝐻ୠ୪୭ୡ୩ = diag(𝐻ଵ, … , 𝐻௠), 𝑏ୠ୪୭ୡ୩ = [𝑏ଵ
ୃ, … , 𝑏௠

ୃ ]ୃ. 

従って最適条件は線形方程式 
(𝐻ୠ୪୭ୡ୩ + 2𝜆(𝐿 ⊗ 𝐼௥) + 2𝜂𝐼)ௗ𝑠   =   𝑏ୠ୪୭ୡ୩ + 2𝜂ௗ𝑝௚  

ここで 𝑝௚は global intent からの投影項の線形表現（各パッチ 𝑖への 𝑃௜(𝑔)を並べたベクトル）。 

・この線形系は疎かつ大規模なので、共役勾配法（CG）など反復解法で解くのが適切。𝐻ୠ୪୭ୡ୩ が対角ブ 

ロックであれば前処理は容易。 

5.3 調和投影（コホモロジー整合） 

上の更新後、𝑠  をラプラシアンの零空間に投影して調和代表を得る操作を入れることにより「可能な限

り global consistent な構成」を得る。具体的には零空間基底 𝑈଴を計算し 

𝑠୦ୟ୰୫ = 𝑈଴𝑈଴
ୃ𝑠. 

零空間の次元が 0 でない場合、この操作はコホモロジー障害を除去しない（障害は 𝐻ଵに存在する）が、

調和部分のみを採用することで意味的に最大整合な成分を抽出できる。 

 

6 実装上の詳細・計算複雑度 

・DFT（Windowed FFT）: 各ウィンドウで FFT を使えば 𝑂(𝑑𝑇log 𝑇)またはウィンドウ毎に小さな FFT  

を並列化で高速化可能。 

・ラプラシアン関連: 隣接行列はスパース（各ウィンドウは有限数の近傍）なので 𝐿 ⊗ 𝐼௥ もスパース。

CG 法はエポックあたりの反復で 𝑂(#nonzeros)コスト。 

・零空間基底の計算は Lanczos や ARPACK・sparse SVD を用い、零固有値に対応する固有ベクトルの

みを求める（通常は低次元）。 

・メモリ：𝐻ୠ୪୭ୡ୩  がブロック対角であれば分散実装が容易。Transformer への組み込み時はミニバッチ

毎に同様の操作を行う。 

・実装例では、動画・音声や知識推論の生成評価に適している。 
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7 Transformer への組込み 

7.1 Spectral Module（各層・ヘッド） 

各層 𝑙 、各ヘッド ℎ に対してトークン軸で短いウィンドウ（⾧さ 𝑤 ）をスライドして DFT を施す。ヘッ

ドのキー／クエリ・重み行列を修正する形で global intent を残差として加える実装案： 

 層 𝑙 、位置 𝑡 の中間表現を 𝑥௧
(௟) 。そのウィンドウの低周波再構成を 𝑔௧

(௟) とすると、Transformer の

自己注意の入力を次のように補正： 

𝑥෤௧
(௟)

= 𝑥௧
(௟)

+ 𝛼(௟)𝑔௧
(௟)

, 

ここで 𝛼(௟)は学習可能なスカラー（あるいはチャネルごとのスケーリングベクトル）。 

これを Query/Key/Value の入力とする。 

7.2 Cohomology Regularizer の注入 

 各層のある中間出力をウィンドウごとに切り取り 𝑠௜
(௟)とみなし、損失として 

ℒୡ୭୦
(௟)

= 𝜆(௟)𝑠(௟)ୃ
(𝐿 ⊗ 𝐼௥)𝑠(௟) + 𝜂(௟) ෍ ∥

௜

𝑠௜
(௟)

− 𝑃௜(𝑔(௟)) ∥ଶ
ଶ 

を学習時に追加する。これにより勾配が逆伝播し、Attention／FFN の重みが局所整合を反映するよう

に学習される。 

 

Input: V (d x T), initial model params θ, hyperparams λ, μ, η, window cover U = {U_i} 

For each training batch: 

  1. Forward pass: compute model intermediates; extract local 𝑠௜
଴ per window 

  2. Compute DFT for chosen windows: Vtilde = V F  (or windowed FFT) 

  3. Compute 𝐸௡, 𝑝௡ = 𝐸௡/𝑠𝑢𝑚𝐸 

  4. Choose 𝑂𝑚𝑒𝑔𝑎 by threshold S or KL criterion 

  5. Compute global intent g = IDFT(𝑉𝑡𝑖𝑙𝑑𝑒[: , 𝑂𝑚𝑒𝑔𝑎]) (𝑜𝑟 𝑝𝑒𝑟 − 𝑝𝑜𝑠 𝐺) 

  6. Compute Cohomology reg loss 𝐿௖௅೎
𝑜ℎ = 𝜆𝑠ᇱ(𝐿 ⊗ 𝐼)𝑠 + 𝜂𝑠𝑢𝑚௜ห|𝑠௜ − 𝑃௜(𝑔)|ห

ଶ
 

  7. Compute spectral KL 𝑙𝑜𝑠𝑠 𝐿_𝑠𝑝𝑒𝑐 =  𝜇 𝐷_𝐾𝐿(𝑝 || 𝑝_𝑂𝑚𝑒𝑔𝑎) 

  8. Total loss = task_loss + L_coh + 𝐿_𝑠𝑝𝑒𝑐 

  9. Backprop and update θ (and optionally update s via inner loop linear solve if doing inference-time  

harmonization) 

 

オプション：推論時にオンライン整合化として、固定パラメータで上記の線形方程式を反復解法で解き 

𝑠を調和化して最終出力を得る。 

 

8 評価とアブレーション 

 Perplexity：標準的にクロスエントロピーから計算。 

 一貫性スコア（局所整合率）：局所交差対 (𝑖, 𝑗)に対して整合判定関数 𝟙[agree(𝑠௜, 𝑠௝)]を定義し、 
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Consistency =
1

∣ 𝒫 ∣
෍ 𝟙[agree(

(௜,௝)∈𝒫

𝑠௜ , 𝑠௝)]. 

 VNE 変化：トレーニング前後での VNE(𝑝)の差分や、帯域 Ωのエネルギー保持率 ∑ 𝑝௡௡∈ஐ 。 

 アブレーション：𝜆 = 0（Cohomology 削除）、𝜇 = 0（スペクトル制約削除）、𝜂 = 0（global prior 

削除）を比較。 

 

9 結論 

本稿では DFT＋VNE に基づく「大局先取り」方針を基礎として、被覆上のコホモロジーとグラフ版ホ

ッジ分解を組み合わせることで、局所推論の意味的貼り合わせ（harmonic gluing）を数式的に定式化し

た。目的関数、線形化された局所更新式、ラプラシアン投影による調和代表、Transformer への導入方

針を具体的に示した。実装は FFT・疎線形代数・反復解法を組み合わせることでスケーラブルに実現可

能であり、アブレーション実験を通じて 𝜆, 𝜇, 𝜂 の寄与を定量化することで理論的主張を実証できると期

待される。実装例では、動画・音声や知識推論の生成評価に適している。 

 

付録（導出メモ・数式展開） 

1. コバウンダリ→ラプラシアン展開 

各辺 𝑘 = (𝑖, 𝑗)の差分を 𝑑௞ = 𝑠௝ − 𝑠௜。全辺の二乗和は 

෍ ∥

௞ୀ(௜,௝)

𝑠௝ − 𝑠௜ ∥ଶ
ଶ= 𝑠ୃ(𝐵𝐵ୃ ⊗ 𝐼௥)𝑠 = 𝑠ୃ(𝐿 ⊗ 𝐼௥)𝑠. 

2. 局所二次化から線形系への導出 

局所二次近似を並べると全体ヘッセは 𝐻ୠ୪୭ୡ୩。合成項を足すと係数行列が得られ、その解が最適 

𝑠（一次条件）を満たす。 

3. 調和投影 

ラプラシアンを固有分解 𝐿 ⊗ 𝐼௥ = 𝑈Λ𝑈ୃ。零固有値に対応する基底列を 𝑈଴とすれば、 

 𝑃୩ୣ୰ = 𝑈଴𝑈଴
ୃ。 

4. コホモロジー 

本研究のコホモロジーは、意味的被覆上の Čech 複体を線形化した Relaxed Cohomology であ 

る。すなわち、𝐻ଵ = 𝑘𝑒𝑟𝑑ଵ/𝑖𝑚𝑑଴の商構造ではなく、𝑘𝑒𝑟𝑑଴
்𝑑଴   (𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 0 − 𝐶𝑜𝑐ℎ𝑎𝑖𝑛𝑠)として 

扱い、障害は Quotient として消去はしていない。 

5. 命題（弱い同定可能性） 

  トークン列が局所的な摂動を受けても、低周波エネルギー分布は高周波より安定である。 

6. 意味空間のエントロピー保存原理（KL/VNE 制約の意味論的解釈） 

  𝐷௄௅(𝑝 ∥ 𝑝ஐ)は、情報理論的には「スペクトル削減による情報損失」で、意味論的には「文脈自 

由度の喪失」になる。 

   7. 調和投影の「意味」 

   ホッジ分解の意味論的対応表 

    数学     意味 
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    Exact 成分    局所的な言換え誤差 

    Coexact 成分    ノイズ・局所過剰適合 

 Harmonic 成分    全ウィンドウで合意された意味 


