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Abstract:

This paper investigates the entropy structure of scaling-normalized vector representations in
high-dimensional language spaces. We show that high-entropy vectors are typically
distributed near the origin, while low-entropy vectors tend to extend along basis directions
and lie far from the origin. This geometric property is analyzed in connection with stochastic
differential equations (SDEs) and Ité calculus. In particular, we apply It6's lemma to derive a
stochastic formulation that characterizes semantic drift and diffusion along the vector field,

providing a probabilistic interpretation of entropy gradients in language models.

1. Introduction

Language models represent words or phrases as high-dimensional vectors. To analyze these
vectors in a geometrically meaningful way, we apply scaling normalization, which preserves
directional features while projecting the vector field onto a bounded norm space.
Interestingly, the entropy of such normalized representations reveals a clear spatial pattern:
high entropy vectors concentrate near the origin, whereas low entropy vectors align along
the principal basis vectors at a distance.

This study explores this phenomenon both geometrically and probabilistically, leveraging the

machinery of stochastic differential equations (SDEs), It6 integrals, and entropy geometry.

2. Scaling Normalization and Entropy
Let x € R™ denote a word vector. We define the scaling-normalized vector as:
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where |||l is the Euclidean norm. The entropy H(X) is considered with respect to the
probability density of £ over the unit ball. Empirically, we observe:
e H(®)is highwhen || x || is small, meaning vectors lie near the origin.
e H(®)is lowwhen || x || is large and aligned with a canonical basis.
This suggests an entropy field over the vector space, where semantic specificity (low entropy)

is linked to directionality and magnitude.

3. Stochastic Representation of Vector Dynamics



To model the evolution of these vectors, we consider a stochastic process X; governed by the
SDE:

dX; = u(Xp)dt + a(X,)dW,
where p is a drift term, ¢ is a volatility matrix, and W, is an n-dimensional Wiener process.

We apply Itd's lemma to a scalar function f(X.), e.g., entropy or norm function:
1
df(X,) = <Vf U+ ETT[O'TVZfO']) dt + Vf - odW,

This allows us to compute how the entropy (or its proxy) changes as vectors diffuse in the
space. In particular, when entropy is viewed as a scalar field H(X), we model its local behavior
through:

dH(X,) = LH(X,)dt + VH - sdW,

where L is the generator of the diffusion process.

4. Interpretation in Language Models

In language representation spaces, vector movement due to contextual updates (e.g., during
prediction or pretraining) can be seen as a stochastic trajectory. High entropy regions near
the origin reflect semantic ambiguity or polysemy, whereas low entropy vectors away from
the origin represent semantic sharpness or specificity.

Thus, the entropy gradient VH(x) can guide attention or sampling in generation models.

5. Conclusion and Future Work

We have presented a framework that links the geometric distribution of normalized language
vectors with entropy and stochastic dynamics. The application of It6 calculus provides a
deeper understanding of how vectors evolve and encode meaning probabilistically.

Future work will include the empirical estimation of drift and diffusion terms from

transformer-based models and the construction of entropy-aware sampling algorithms.



